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The mechanism and kinetics of diffusion-controlled heterogeneous chemical reactions 
taking place in a dense layer of a granular permeable material, is investigated. Gas-solid 
chemical reactions of this type are encountered in such technological processes as calcin- 
ing the iron ore pellets Cl], maifacture of sponge iron 12 and 31, gasification of solid fuels 

with appreciable ash residues [4], e. a. 

In the present paper we obtain a quasilinear system of partial differential equations 
describing diffusive mass transfer in a layer. The problem is complicated by the fact that 
the size of the zone in which the reaction takes place is not known in advance, therefore 

its boundaries must be determined in the course of solution. In the case of an isothermal 
mass transfer however, the solution can be obtained in a closed form. Variation of the 

similarity criteria with the dimensionless arguments, i. e. the time and the distribution 

coordinates, is shown graphically. 

1. Boric phyaicol premisea and the chrmical reaction equation@. 
The heterogeneous, diffusion-controlled reactions considered here possess a characteristic 

feature, namely their zonal character within each particle [l and 41. We can assume that 
at any instant of time the particle consists of two zones separated by the reaction inter- 
face. The outer zone consists of reaction products and the inner one - of the unreacted 

material. Convective diffusion is responsible for bringing the active gaseous component 

(oxygen in the oxidation processes, CO or Ha in the reducing processes) to the surface of 

the particle, where molar or molecular diffusion takes over to bring it to the reaction 
interface where it reacts with the solid (Fig. 1). 

We shall consider a layer composed of homogeneous 
spherical particles of the equivalent radius R. As we know, 
the quantiv R can be derived from the experimental gran- 

ularity measurements [5]. 
If we assume that the whole surface of the spherical par- 

ticle is equally accessible to the reactive gas component 
and neglect its change in concentration in flowing over a 
distance of the order of the particle diameter, then we can 
assume that the reaction interface is also spherical. Rate 

Fig. 1 
of displacement of the reaction sphere defining the overall 
chemical reaction rate, can be found from the mass balance 

equation for the reacting gas at the solid-solid interface 

- 54@p / dr) = dkc(p) (1.1) 

where p is the radius of the reaction sphere, ‘G is time, 5 is the stoichiometric extent 
of reaction parameter, Y is the volume weight of the particle, g is the content by 
weight of the reactive component in the solid reactant, 6 is the density of the reactive 
gas, k is the reaction rate constant and C(p) is the excess concentration of the reacting 
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4) = c’(p) - co 
where c”(p)‘is the actual concentration and co is the equilibrium concentration. We shall 
assume that the equilibriumconcentration co is independent of the radius of the reaction 

sphere and, that the inequality c”(p) > co holds. 

In other words, we shall assume that the reaction proceeds with absorption of the gas- 

eous phase. 
In the following we shall regard the excess concentration c (p) as the transport potential, 

In the zone of products the gas is not used up, therefore its excess concentration C(T) 
varies according to the usual law of diffusion 

(1.3) 

(1.4) 

where D is the effective diffusion coefficient, g is the convective mass transfer coeffi- 
cient and c, is the concentration of the reagent in the gas stream, we can solve (1.3) to 
obtain the law of distribution of concentration C(T) throughout the thickness of the con- 
sidered zone (~IkR)+tl-_(Plr)l(PlR) 

c(r)=cx (U/IcIl)-t(2/R)-[I-(D/PH)](p/R)” (1.5) 
This is the distribution under the steady state conditions,when p / H ( 1. 

It is a well known fact, that in a diffusion-controlled reaction the value of the coeffi- 

cient D / kR is much less than unity. On the other hand, the coefficient D ] PR is 

uniquely connected with the Nusselt number iVNU by the relationD / fiR=2/NN!,* D II D 
where D o is the outer diffusion coefficient. 

Since under the conditions encountered in various technological processes the Nusselt 
number is sufficiently large (N Nu = 50+.-10(l), the outer diffusion which opposes the 

mass transfer -process can also be neglected. 
Thus in the case of heterogeneous chemical reactions whose limiting rate is governed 

by the diffusion of gas within the particle (inner diffusion mode), the followingapproxi- 

mate analog of (1.5) 
c (4 = c, 

(Dl kR) + [i - (P / r)l (P / R) 
(P/R) - (P/ W 

(G) 
will cause a detectable error only for very small radii of the reaction sphere. Insertion 
of (1.6) into (1 .l) leads to the following equation defining the law of variation of the 

radius of the reaction sphere with time 

(1.7) 

To construct an equation defining the concentration 
c, of the reactive component in the gas stream, we 
shall require the mass balance equation for a unit area 
element dx of the reaction zone at the distance x 
from the layer surface (Fig.2). We first note that the 
change in the amount of the reacting element in the 
gas stream after it has passed the element of the layer 
just mentioned, is equal to 

s.t 
Fig. 2 dJ=-w%ds (1.8) 
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where ,o is the filtration rate computed over the whole cross section of the layer f’). 
On the other hand, I d,j is equal to the product of the reaction rate in a unit volume 

of the layer and the volume element &I’ = 1 r&z. Reaction rate for a single particle is 

Since the rate of reaction per unit layer volume.iSNtimes larger, where 

N_ 3 l--m --- 
4 nR= 

is the total number of particles in the considered volume and ??z denotes the porosity of 

the layer, the required expression for dJ will become 

-4 CgY 3 dJ = (I 6 =(l-f,dx (1.11) 

Equations defining the concentration c, are obtained by comb~ing fl,8) and (1.11) 

and can be written as aC, _ (f_ 
-_- 

8X 

mJkr .2_ &$, 
td a7 ( 

(1.12) 

Thus the diffusive mass transfer process in a granular layer can be described by a sysr 
tern of two quasilinear partial differential equations (1. ‘7) and (I. 12). 

Values of the diffusion coefficient D appearing in (1.7) and of the equilibrium con- 
centration c, ooth depend, generally, on temperature. Within the range of tem~rat~es 

encountered in various technological processes this dependence can be schematized using 
the Arrhenius (or other) type equations [J., 3 and 41. This imposes the necessity of con- . 
sidering the mass transfer equations (1.7) and (1.12) together with the heat transfer equa- 
tions in the presence of internal heat sources. In the present work, however, the mass 
transfer process in question is isothermal, therefore the quantities D and co are constant, 

This is possible in particular when the transport phenomenon in the chemical processes 
has low activation energy or, when U and co are computed at the temperature chosen in 

a certain definite manner. 

a. Simflrrfty crfterfon of the frothermrl mar8 trrn:fer rnd the 
bouadoty conditions. When describing the reaction kinetics we find, that the 

extent of conversion of material is a more convenient parameter than the radius of the 
reaction sphere. We shall therefore adopt the extent of conversion of material equal to 

the ratio of the volume of the reacted material of the particle to its total volume 

* = 1 - (p / R)3 (2.U 

and the reactive concentration 

where c,‘*) is the excess concentration of the reactive gas component at the layer surface, 

as new dimensionless variables defining the similarity criterion. We note that the new 
variables ‘II, and c , by virtue of their physical nature, may vary within a unit interval 

(0.1). 
In addition we shall introduce new dimensionless variables defined by 

(2.3) 

*) We neglect the variation in the filtration rate caused by the fact that the quantity 
of thereactive component diminishes. 
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Now we can write the basic equations (1, ‘7) and (1.12) describing the course of the 
chemical reaction within the layer, in dimensionless form 

a$ 
- = cP($), 
an 

-& = -ccF($), F (9) = (I - q)’ “__ 
1 - (1 - I#)‘/’ (2 *4) 

Here F($)is a continuous positive function monotonically over its interval of defini- 
tion (0.1) from infinity to zero. 

Equations (2.4) are valid only within the reaction zone, which at any fixed instant q 
is defined by the inequality 

E*(rl) (5 <E*(r) (2.5) 
Boundaries of the reaction zone (in the following we shall discuss, for convenience, only 

their dimensionless analogs) are not known in advance and have to be determined in the 
course of solution of the problem. When E > E,(q), the material has not begun to react 

with the gaseous phase, therefore c = $ = 0. On the other hand, the inequality E< g*(r)) 
holds in the zone of reacted material (c = g = 1) (“) , 

At a fixed depth E the reaction starts at the instant ‘1 = q*(E) where q*(t) is the 
inverse of E,(q). Thus the initial conditions for the system (2.4) can be written as 

* Ie=?*(E) = c jri==r,,(Q = 0 (2.6) 

Boundary conditions are somewhat more complicated. The difficulty lies in the fact 
that when q <q*(O) , where q*(E) is the inverse of E*(q), then the material at the 
surface of the layer has not fully reacted and we have a special boundary condition 

c ]+o = 1 (2.7) 

If ‘l > rl*(o), h t en a zone of fully reacted material is situated next to the surface 
and the following two boundary conditions then hold 

II, )Z=E’@) = c IT=f’(*) = 1 (2.8) 
Although two boundary conditions (2.3) replace a single one, the problem does not 

become overdefined since the equation of the boundary E; = T;*(q) is not known. The 

same remark applies to the initial conditions (2.6). 
The initial and boundary conditions predetermine the existence of two, essentially dis- 

tinct stages of the mass transfer. The first, initial stage, is characterized by the fact that 

the reaction zone directly adjoins the layer surface and represents, on the plane of argu- 

ments, a triangular area bounded by the curves E, = 0, q = q*(O) and TV = q*( 6). The 
next stage which we shall call the steady state stage, occurs in a semi-infinite zone situ- 

ated within the layer and bounded by the curves E = c* (q), Tj = q*(O) and 'V = 

= rl*(E) 
All the above argument reflects the physical nature of the problem and is, generally 

speaking, valid also in the general case of nonisothermal diffusion. 

3. Integration of the chemical kinetic8 equations. Systems ofnon- 
linear partial differential equations cannot, in general, be integrated by the classical 
methods and numerical methods are usually resorted to. In the present case however, the 

*) Keeping in mind the definition of applicability of the basic relation (1.6) given in 
Sect. 1 we note, that the actual values of c and $ at the boundaries g, and E* of the reac- 
tion zone are, generally speaking. not equal to the values shown here, although the differ- 
ences are not large. 
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process assumes the character of a travelling wave propagating at a constant velocity. 
Boundaries of the reaction zone consist, at this stage, of mutually parallel straight lines. 

Therefore its width 
E*(d-E*(rl) = va ln 3-% Q (3.20) 

is constant and so is. the duration of reaction for all particles which are deeper than 

s/s In3 - i/6 n 1/3 (Fig. 3). Comparing.(3.6) with (3.15) and (3.13) with (3.19) we 
see, that the quantities c and 9 remain continuous during the transition from the initial 

to the steady state and the boundary of the reaction zone remains unbroken. 

Figure 4 shows the variation of the relative concentration c and of the extent of con- 

version of material 9 versus the dimensionless distribution coordinate 5 (on the figure 
<=E) for various values of the dimensionless time 7. We see that the curves for c and 

II, are essentially different during the initial stage of the mass transfer (n(%) ; they 

merge into each other during the second stage. 

We note that the distribution of the concentration and of the extent of conversion of 
the solid throughout the thickness of the reaction zone in the second stage of the mass 

transfer (rl> l/s) also defines the distribution of the corresponding quantities when the 
gas and the solid move in opposite directions. Parameters of the counter-current mecha- 
nism (rate of delivery of the solid, gas consumption, etc. ) are then obtained from the 

condition (3.7) which represents a dimensionless mass balance equation in the reaction 
zone with the mass transfer completed. 

In conclusion the authors take this opportunity to thank L. A. Ladyzhenskii for assistance. 
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